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An Iterative Method for Simultaneous ~et~rminatiQ~ 
ulk and Shear Moduli and Density Variations 

Y. M. CHEN AND G. Q~ XIE 

The PulseeSpectrum Technique (,PST), an iterative numerical method. is extended to solve 
the three-parameter inverse problems of two-dimensional and three-dimensional linear clastk 
nave rquatiooa. i.e.. to determine simultaneously two-dimensional and three-dimensional bulk 
and shear moduli and density variations from surface data. Numerica! simulations of simpie 
but non-trivtal examples are carried out on coarse computational grids to test the feasibili:] 
and to study the general characteristics of PST without the rcai measurcmcnt data. It is found 
that PST under these conditions does give reasonably good reAts. Iv~orwvrr, a comprrhen- 
sive discussion of the numerical results, their implication in actual implementing of PST. and 
the future improcement on PST to attend higher resolution with little additional computing 
costs is given. 5” 19S6 Academic Pres., Inc. 

INTRODUCTION 

To determine the mechanical properties of the Earth’s interior as functions o! 
space variables from the seismic data is an important problem in geophysical 
prospecting. Based on the simplest Earth model. the Earths interior consisting of 
isotropic and linear elastic materials. these mechanical properties cannot be charac- 
terized quantitatively by just a single parameter, e.g., the characteristic longitudinal 
velocity, or by a pair of parameters, e.g.. bulk modulus k(x) and density Q(X), for 
one needs three parameters, e.g., k(x). shear modulus /l(x) and p(x), or an 
equivalent set, n(x), p(x) (Lame parameters) and p(x), to give a precise charac- 
terization of these mechanical properties. This type of problem can be formulated 
mathematically as multi-parameter inverse problems of a system of linear partial 
differential equations or more precisely, three-parameter inverse problems of the 
linear elastic wave equation. 

A great many papers on inversion methods have appeared in the seismic 
hterature recently. Among these are Bamberger, Chavant, Hemon and Lailly 
(1982), Berryman and Greene (1980), Bieistein and Cohen (19g2), Coen (1980, 
1981, 1982), Cohen and Bleistein (1977, 1979). Clayton and Stolt (1981) R~L 
( 1981a, 198 lb, 19X?), Weglein, Boyse and Anderson ( 1981), etc. Except for the 
method of time-history matching by functional minimization of Bamberger e’, d. 
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(1982), most of these inversion methods rely on the application of various kinds of 
analytical approximations to simplify the original inverse problem before perform- 
ing the numerical calculation, and hence these inversion methods possess various 
kinds of deticiences incurred from these approximations. Although some of these 
papers have addressed the two-parameter inverse problems, none of these have 
addressed the three-parameter inverse problems of the linear elastic wave equation. 

On the other hand, a purely numerical inversion method, the Pulse-Spectrum 
Technique (PST), based on a totally different philosophy from the above- 
mentioned inversion methods, has been proposed and developed since the early 
1970s (Tsien and Chen, 1974 and 1978; Chen and Tsien, 1977; Chen, 1979; Chen 
and Liu, 1981, 1983 and 1984; Chen and Weng, 1982; Chen and Lin, 1983; Hatcher 
and Chen, 1983; Liu and Chen, 1983; Merz, 1983; Chen and Xie, 1984). The basic 
philosophy of PST is that no a priori analytical approximation of any kind should 
be made and the only approximation is the discretization of the exact inverse 
problem. Hence to make the discretized problem accessible, one has to rely entirely 
on modern sophisticated computing techniques and strategies which sometimes 
have to be developed just for this purpose. It has been shown in the literature con- 
cerning PST that PST has the following advantages: 

(a) It is immune from those deficiences of the inversion methods based on 
some kinds of analytical approximations, e.g., the requirement that the reference 
parameters be constant, the assumption that unknown parameters be slow varying 
and of small deviation from their references. etc. 

(b) There are no dimensional and geometrical limitations on the space 
domain of interest. 

(c) It is equally applicable to inverse problems whether the data are obtained 
from single frequencyymultiple locations (arrays) or form multiple frequency 
(pulse)-multiple locations. Furthermore, only a small number of data are needed 
for a successful calculation. 

(.d) It is general enough so that it can be used to solve multi-parameter 
inverse problems of both hyperbolic and parabolic partial differential equations 
with trivial changes in the computer code of PST. Moreover, it can provide a 
systematic generalization for solving multi-parameter inverse problems of 
anisotropic elastic wave equation. 

(e) It is more efficient than other purely numerical inversion methods, e.g., 
the methods of time-history matching by functional minimization (Chen, Gavalas, 
Seinfeld and Wasserman, 1974; Chavent, Dupay and Lemonnier, 1975; Bamberger, 
Chavent, Hemon and Lailly, 1982). 

Of course, PST is not without its own deficiencies. The obvious one is the higher 
computing costs in comparison with those inversion methods relied upon various 
analytical approximations. In particular, PST will incur prohibitively high com- 
puting costs in solving three-dimensional multi-parameter inverse problems. 
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However, with the advent of modern super main-frame computers in the near 
future and tremendous progress in modern computational techniques, many three- 
dimensional variations of J.(x), p(x) and p(x) can be simultaneously determined 
from surface data(measurements) by using PST at reasonable costs. 

The main purpose of this paper is to demonstrate that PST can be extended to 
solve the three-parameter invervese problems of two-dimensional and three-dimen- 
sional linear elastic wave equations. In particular, some realistic three-parameter 
inverse problems of two-dimensional linear elastic wave equation can be solved 
with sufficient accuracy by using PST at reasonable costs on a slow mid-sized main- 
frame computer. Moreover, this accuracy can be achieved without using a large sur- 
face data set. As a matter of fact, a good numerical method does not need a large 
input data set to produce accurate numerical solutions. It should be pointed out 
that the results here are not optimal by any standard and there is no claim that the 
existing PST is able to solve the ultimate seismic inversion problem. The outline of 
the basic numerical algorithm of the extended PST is presented in the next section 
Numerical simulations of simple but non-trivial examples are carried out on coarse 
computational grids to test the feasibility and to study the general characteristics of 
PST without the real measurement data. Finally, a comprehensive discussion of the 
numerical results, their implication in actual implementing of PST, and the future 
improvement on PST to attend higher resolution with very little additional com- 
puting costs is given. 

PULSE-SPECTRUM TECHNIQUE (PST) 

The displacement vector u(x, t) = {L’lLY1> x2, X3, t), u&x,, x2, x3, t). 
143(.XI, x2, xj, t)> in an inhomogeneous, isotropic and bounded elastic medium Q 
satisfies the linear elastic wave equation 

a(n(x)v. U)/d.K, + $ a(p(x)(Sz4,:a.K~, + az4~j,!a”K,j)~~axi 
j=l (1) 

-p(x) a%Jst2 = 0, i-1,2.3, XER, o<t<CG, 

subject to the initial conditions 

u(x, 0) = au(x, oyat = 0. 

and the boundary conditions 

x E s-2, 

and 
l(i(X, I) = .f,(.x, tj, XEdR,, i= 1, 2, 3, 

( 2) 

i31 



146 CHEN AND XIE 

where dQ = I:= I aQ2, + xf= I XJn, is the boundary of CJ, n is the outer unit normal 
vector to &2 and Zi is the unit vector in x, direction. Here the three-parameter 
inverse problem of the linear elastic wave equation is to determine A(x), p(x) and 
p(x) from the known boundary data fior(x, t) and hjD(x, t), i= 1,2, 3, and the 
measured auxiliary data 

ujix, tj = PAX, t), i = 1, 2, 3, XE~~,C f aq, (54 
p=1 

or 

A(X) i a2fj/ihjjn. li) + t p(x)(au,ja.yj + &,/ax-,)(n . r,) 
j-1 j=l 

= 4i(X, t), i=1,2,3, xEac+ f as2,, 
(5bj 

which is equivalent to the derivatives of u(x, t) measured at X?,. 
The first step of the pulse-spectrum technique (PST) calls for the Laplace trans- 

formation of (l)-(5) so that the entire system is transformed from the time-domain 
to the complex frequency-domain. Hence the initial-boundary value problem of 
the hyperbolic system is transformed into the following positive-definite elliptic 
boundary value problem, 

a(n(x)vevyaxj + t a{p(x)(aLljia.yj +aqa~~))/a,~,~ -p(~)~%~j=o. 
j=l 

O<S<‘X’, i= 1, 2, 3, x E 52, 

UJX, s) = F,(x, s), i= 1, 2, 3, x E asz,, 

/l(x) t aqbj(n. zi) + i pCr(x)(iioj/axj + at;.jih,)(n. 1,) 
j= 1 j=l 

= ff$(X, s), i= 1,2, 3, xEaStgr 

and the auxiliary data 

or 

Oi( x, s) = Pi( x, s), i= 1, 2, 3, XEdQt, 

A(X) i duj/ihj(n~ rij + i p(X)(avf/a.x, + au,/ii~,)(n. fj) 
i= 1 j=l 

= Q,(x, s), i= 1,2,3, xELX2,, 

(61 

(7) 

(8) 

(9ai 

Pb) 

where V(X, s), F,(x, s), Hi&x, s), PJx, s) and Qi(x, s) are the Laplace transforms of 
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u(x, r),f,,(x, t)? k&x, t), pi(x, t) and qjx, t), respectively. Now, the multi-parameter 
inverse problem becomes the determination of A.(x), ,u(x) and p(x) from the known 
boundary data F,,(x, s) and Hi&x, sj and the auxiliary data P,(.x, S) or Q,(x. 5): 
i= 1, 2, 3. 

The iterative numerical algorithm of PST begins by setting 

V ,l+~lix,S)=V,L(X, S)fb)‘,,(X,S), ~,+I(xi=~~,r(X)+6ii,,lx), 

ill,+I!X)=C(,(lo+6~,,(x), Pn+l(X)=P,I(X)+6P,l(XBI n = 0, 1, 2, 3,..., 

ilO) 

where &(x), pO(x) and pO(x) are the initial guesss of the unknown parameter: 
II dj.,, II < II 3., II, II hL, II < II II, IL and jj6p,, // < I/p, // (Max. norm or L, norm ); and at 
~~22~ or XI,,, /lo(x) = /l(xj, pO(x) =p(x) and pO(x) = p(x j. This iterative 
algorithm is a special Newton-like method (constrained Newton’s method) but not 
the Newton’s method which calls for no need to iterate v known on a portion of 
82. 

Upon substituting (10) into (6)-(8) and neglecting terms of order 6’ and higher, 
one obtains a positive-definite elliptic system for v,,( x. s ), 

and 

and a similar elliptic system for Bv,,(x, s), 

ZE Ki,,(x, s, bE.,, 6P,,, bp,,i, a linear functional of &,I,, ~,LL,, and Sy,, 

O’<s< (2. i = 1) 2, 3, XEQ, 

~u~,,(x, sj = 0, i= 1. 2, 3. XE&2,, (15) 
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and 

j=l j= 1 

= - &I, 2 aVj,,/SXj(n. fj) - i 6pn(av,/a.yj f ik,,/ax,)(n .I,) 
j=l j= 1 

set to 0, i= 1, 2, 3. (161 

By using the method of Green’s function, the elliptic system (14))(16) can be 
changed to an integral relation among s&(x), &,Jx), 6y,,(x) and 6v,(x, s), 

. . 
JSJ G,(x, x’, s) K,(x’, s, 61,, 6pu,, 6p,,) dx’ = &,(x, s), iw sz 

where G,,(x, x’, s) is the Green’s matrix of the elliptic partial differential operator in 
(14)-(16). Upon setting x at aQR,, replacing v,(x, s) by v(x, s) at the right-hand side 
of (17) (lim v = v) and with the help of the auxiliary condition (9a j, one rz + ic ,I 
obtains from (17) a system of Fredholm integral equations of the first kind for the 
unknowns 61,(x), &,,(x) and 6p,@), 

sss Gn(x, x’, s)l xsimt Wx’, s, %z, hc1,, b,) dx’= (W, s)-vv,(x, s,} lxeant. (18) 
R 

Similarly, a more complicated system of Fredholm integral equations of the first 
kind can be obtained from (17) with the help of the other auxiliary condition (9b). 

Equations (lo)-(13) and (18) form the basic structure of each iteration (the 
linear subproblem) in the iterative numerical algorithm of PST. First, a numerical 
integration subroutine is used to evaluate the Laplace transforms F,(x, s), Hip(x, s) 
and P,(x,s) or QJx,s) at s=s,,, r~= 1, 2, 3 ,..., M. Then these discrete values are 
used to solve (llj-(13) and (18) numerically. The positive-definite elliptic system 
(llt(13) and the Green’s matix of (14)-( 16) can be solved numerically by using 
the first order finite difference method introduced by Chen and Liu (1983) and Liu 
and Chen (1984) for solving one-parameter inverse problems of two-dimensional 
wave equations and diffusion equations, respectively. It assumes that Q can be 
approximated by a collection of small tetrahedrons, where the ratio of the 
maximum dimension of the minimum dimension is of order one. Let each interior 
computational grid point be denoted by a set of three numbers (K, I’, i). Let the 
centroids of the eight nearest tetrahedrons surrounding the point (K, V, <) be c~,,,,:,~., 
w = 1, 2, 3 ,..., 8, such that they form a new small tetrahedron AQL ,,,, i with (x, V, [j in 
it. If d&?:,,,,; is small enough, then (A,,. pn, p,) can be approximated by constants 
within the first order accuracy in dQ:,,,s. After taking the scalar product of any one 
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of ei, i = 1,2, 3, unit vectors in xi directions, with (11) and integrating it over 
AC?:.,,,;. one obtains the approximate equation 

ei’ [(L +2p,,jV(V.V,,)-p,,VXVXV, --p,2szvn\ dxr0. (19) 

By Green’s theorem, (19) becomes 

{(An +L?p,)V.v,,(e;n)-p,,(Vxv,).(n.ei)l da-s2 [I[ pi2~l,li dx 10, 
‘-‘AR;.,.; 

where n is the outward unit normal vector of the incremental surface Ac?SZ:.:,,~ 
enclosing the incremental cubical volume A!& ,,.:. 
The surface integrals in (20) are discretized by using the trapezoidal rule. Further- 
more, the first order partial derivatives in the integrand at the corners c,.,.~.,%, 
11’= 1, 2, 3,.... 8. are approximated by 

where A0 K.,,, ;+ and Ad&I,,.+., 11% = 1, 2, 3,..., 8. are the incremental volume of the 
tetrahedrons in the original computational grid system with c,,~,~-~, as their centroids 
and their enclosing surface, respectively, and the surface integral is discretized again 
by using the trapezoidal rule. Finally, the volume integral of (20) can simply be 
approximated by 

(22) 

In this way, the elliptic system (11) in the interior of Q can be discretized into an 
algebraic system with first order accuracy. For the boundary points, an exterior 
layer of “phantom zones” is introduced adjacent to JQ in order to use the above- 
mentioned approximation formulae. 

Since the columns of the Green’s matrix G,, Gnl, j = 1, 2, 3, also satisfy ( 1 I 1 and 
its corresponding homogeneous boundary conditions except that the right-hand 
sides are ej 6(x - x’), j = 1, 2, 3, respectively, one can obtain equations similar to 
(201, such as 
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8 4pp, 1bL +2~,)V.G,,j(ej.n)-~~,,(VxG,,j).in.e,j) d~-s’J]j P,, G,,, A 
k.L,Z 4<2,,; 

=~ej~e,jjjj,,,~,,~ix--x’)hx, j=l,2,3, 
h.!,,, 

= 1, for i=j, x’ = (K, 11, i), 

0, for i= j, x’ # (K, 11, [), 

0, for if j. 

(23) 

Hence the discretized v,, and Gmj, j = 1, 2, 3, satisfy the same linear algebraic system 
except with different right-hand sides caused by the different boundary conditions. 

For computational efficiency, one can solve for v, and GFtj ($Qri, x’, s), j= 1, 2, 3, 
i = 1, 2, 3 ,..., Z, at grid points on X12, simultaneously by solving the following linear 
system: 

D,,id.Q<, h..., D,,,(dQ,,), D,,,i2Q,, L D,z,(W:,) >> (24) 

where A,,(&, pl,, pnr s) is the known sparse band-matrix from discretizing the ellip- 
tic system (ll)-(13); V,,(s) is the unknown vector with all z~,,,~,,,~(.s)‘s as its com- 
ponents; G,,;(cJQ,+ s), i= 1, 2, 3,..., I, j= 1, 2, 3, are the unknown vectors will all 
G,,(XI,,, (K, 11, i), s)‘s as their components, respectively; the known vector B,Js) 
comes from the boundary conditions (12) and (13); and finally the known vectors 
D,,(dQ,,), i = 1, 2, 3 ,..., I, j = 1, 2, 3. come from the boundary conditions (15) and 
(16) and the locations of the Dirac delta function. 

The system of Fredholm integral equations of the first kind (18) can be dis- 
cretized by simply using the trapezoidal rule on the same-computational grid (not 
necessary in general) and the same values of s in performing the Laplace trans- 
forms. and the derivatives in the integrand are approximated by a finite difference 
approximation similar to (21). Hence the integral equation l.18) can be reduced to a 
linear algebraic system, 

Mv,. G,, (?Q:, ~,).dr,, = Sb,,), (25) 

where the full matrix A,(v,,, G,, cK?,, s,) comes from the discretization of the 
integral of (18), th unknown vector ~?r, consists of all &I,,,, ,,,, :, 6~~~ .K.Y, i and bp,,,, ,,,, c 
as its components, and the known vector !!&(s,,) comes from the discretization of 
the right-hand side of (18 j at s = s,, nz = 1, 2, 3 ,..., M. 

Since A,, is a well-conditioned sparse band-matrix, (24) can be solved by any 
efficient modern sparse matrix technique. However, A,, is either a rectangular 
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matrix or an ill-conditioned square matrix, therefore (25) is solved by using the 
Tikhonov’s regularization method (Tikhonov and Arsenin, 1977). In essence, each 
cycle of iteration consists basically of first solving the positive-definite elliptic boun- 
dary value problem (11 )H 13) and deriving the Green’s matrix of ( 14)-( 16) M times 
each and then solving the system of Fredholm integral equations of the first kind 
(18) once. 

NU~IERICAL SIMULATION 

In order to test the feasibility and to study the general characteristics of the PST 
computational algorithm for solving three-parameter inverse problems of two- 
dimensional and three-dimensional linear elastic wave equations without real 
measurement data, the following numerical simulation procedure is carried out: 

First. one chooses a set {i*(x), p*(x). p*(x)), which is supposed to represent the 
correct set of unknown parameters A(x)> /c(x) and p(x), and also chooses the boun- 
dary functions fia(x, I) and h,&x. f), i= 1, 2, 3, LX= 1, 2, 3,..., rl, fl== 1, 2, 3 ,..., B. 
which are supposed to represent a part of the measured data: nevertheless. these 
boundary functions guarantee the existence and the uniqueness of the solution of 
the linear elastic wave equation (the direct problem). Their tapface transforms 

FIG. 1. Comparison of the calculated 1.(x, J)..... and the exact i*(.~, J’t-with the initial gues5 

{1:(x. r)-----, &I-, y i. &I-, J) j. The geometry of 0 and the computational grid system are shown. The 
locations of the applied loads and data measurement are indicated by arrows. 
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F,(x, s) and H&x, s) are numerically computed for a chosen discrete set of .Y, (sm}, 
m = 1,2, 3,..., M. Then the elliptic boundary value problem (6)-(8) is solved by 
using the finite difference method described in the previous section; thus one can 
generate the rest of the supposedly measured auxiliary data Pj(x, s) on 8QS or 
Qi(x, s) on dQ?{, i= 1, 2, 3, with greater effort. Hence upon solving (lo)-(13 j and 
(18) or its companion Fredholm integral equation of the first kind corresponding to 
the auxiliary data Q,(x, sj numerically, A,(x), ,u~(x) and pi(x) are obtained. Then in 
a similar manner, n,(xj, pLz(x) and pz(x) can be obtained. One continues this 
procedure until finally a numerical limit (A,(x), p,Jx), Pi,,> is reached. Other 
than the truncation, round-off, numerical integration, and finite difference 
approximation errors in both generating the numerical data and computing AJx), 
yN(xj and P,,,(X), any norm (e.g., Max. norm or L2 norm) of A*(x) -A,(x), 
p*(x) -pN(x) and p*(,x) -p,(x) can be used as a criterion for evaluating the 
performance of the computational algorithm of PST. In particular, it should be 
pointed out that the numerically generated auxiliary input data Pi(LXI,,K,,.,r, s,,) or 
Qi(dQq,x,v,<, S,), i= 1, 2, 3, m = 1, 2, 3,..., M, are not error free; errors are especially 
large when a coarse computational grid is used, because they are of 0{ (Ax/L)” ), 

8.0 

0 12 3 4 5* X(looM) 

FIG. 2. Comparison of the calculated ~(s, yj..... and the exact p*(x, I>)-with the initial guess 
{$,(x, JJ), &,(x, )a)-----, pk(x, J’)). The geometry of Q and the computational grid system are shown. The 
locations of the applied loads and data measurement are indicated by arrows. 
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FIG. 3. Comparison of the calculated p(.~. y)..... and the exact p*(s, ,v-with the inirial guess 
,.I Lr.,(.~, J), &s, J). pb(?r, y)----- j. The geometry of Q and the computational grid system are shown. The 
locations of the applied loads and data measurement are indicated by arrows. 

2 3 4 5 Xf106M) 

FIG. 4. Comparison of the calculated 1(x, y)..... and the exact i*(s. yt-with the initial guess 
{$,‘(x, y)-----, pk’(x, y), ph’(.~, J)}. The geometry of Q and the computational grid system are shown. The 
locations of the applied loads and data measurement are indicated by arrows. 
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whre dx is a typical dimension between two neighboring grid points, L is a typical 
dimension of Q and u is a positive number depending on the accuracy of the 
numerical method used in solving (6)~(8). Due to the ever present nature of these 
errors, one can consider them to be equivalent to the noise in the measured data. 
Furthermore, one can introduce additional artificial noise by adding to the input 
data any numbers generated by a random number generator. 

For purely economic reasons, the numerical simulation here is carried out on the 
coarse computational grids for both two-dimensional and three-dimensional cases, 
and the number of simulations is limited to the bare minimum. A simple but 
relatively realistic example is chosen for the two-dimensional case; a vertical section 
of 500m by 500 +M with a small hill on the top surface is considered. This region 
consists of three different layers: soft limestone, sandstone and porous sandstone 
with oil. The values of 2*(x), p*(x) and p*(x) used in the numerical simulation are 
obtained from a standard geophysical exploration textbook by Heiland (1968). A 
displacement load with em-’ dependence is applied at the top surface and its respon- 
ses are also measured at the top surface. Here a simple computational grid system 
with Minjds/L) -0.1 is used in the numerical simulation. Two different types of 

FIG. 5. Comparison of the calculated /r(x, JJ)..... and the exact p*(x, ?rFwith the initial guess 
{1:(.x, ,I), p&(x, I’)-----, p~‘(.x, J.)}. The geometry of .Q and the computational grid system are shown. The 
locations of the applied loads and data measurement are indicated by arrows. 
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Fig. 6. Comparison of the calculated p(x, !I..... and the exact [I*(s, y)-with the initial g:iess 
(E.~Cj.x. x ), #(x, J 1, p$ s, y i----- ). The geometry of R and the computational grid system. are shown. The 
locations of the applied loads and data measurement are indicated by axons. 

initial guesses and auxiliary data (the surface dispiacement measurement (9aj and 
the surface stress measurement (9b)j are considered. To avoid the possible error 
cancellation in {P(x. S) - v,,(x, s)> 1 x EPRi and to provide sufficiently accurate input 
to (18j, (6k(8) are solved with grid points tripled in each dimension to obtain 
P(x: s) and (II)-(13) are solved with grid points doubled in each dimension to 
obtain v,(x, s). After five iterations, it is found that the same initial guess and 
auxiliary data, there is no significant difference (less than 4% 1 between the 

FIG. 7. The computational grid system for a rectangular block. The locations of the applied loads 
and data measurement are indicated by arrows. 
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FIG. 8. Comparison of the calculated I(.Y, y, I)..... and the exact 2*(x, J, It-with the initial guess 
{L,(x, J?, z)-----, Pd.? I’, z) 1. 

solutions of the same inverse problem obtained from the data generated on a fine 
grid and on a coarse grid, and for the same initial guess, the numerical results 
obtained by using two different types of auxiliary data possess the same qualitative 
characteristics and their quantitative differences are less than 5%. For simplicity, 
only the numerical results obtained from the tine grid generated auxiliary data (9a) 
are plotted in Figs. l-7. 

,,--------;;\ 
I’/ , \ 

p&103MPa) 
\ 

,;p:-----TX: \ 

FIG. 9. Comparison of the calculated ~(x, y, I)..... and the exact ,u*(x, y, IF-with the initial guess 
{A&C, y, zj, p&c, y, -I-----). 
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Since the numerical solutions that come from P(x, s) generated by different grid 
sizes are practically the same, for reasons of economy, a numerical simulation of a 
simple three-dimensional and two-parameter inverse problem is performed on a 
very coarse grid with Min(d.u/L)-0.25. Here only A(x) and p(x) are calculated 
under the conditions A,,(x)= i*(x) and ~O(x)=~~*(x) on ail boundary surfaces 
except the bottom surface to save computing costs. Due to the symmetry of the 
problem, only the numerical results of one of the two interior planes, after five 
iterations, are plotted in Figs. 8 and 9. 

DISCUSSION 

It is well known that the characteristics and performance of a pure numerical 
method, e.g.? accuracy, stability, convergence and sensitivity with respect to initial 
guess (for iterative algorithms), etc., depend very little on the number of the govern- 
ing equations, the dimension and the geometry of the space domain, and the type of 
initial and boundary conditions. Since PST is a pure numerical method, it should 
have the same invariant properties. Of course, it is difficult to prove this contention 
in a rigorous manner, but a practical justification based on the philosophy of 
mathematical induction has been carried out. In this regard, numerical simulations 
have been performed on more than 100 different examples with more than 500 runs, 
starting from simple one-parameter inverve problems of the one-dimensional wave 
equation (Tsien and Chen, 1974, 1978; Chen and Tsien, 1977) to one-parameter 
inverse problems of the one-dimensional diffusion equation (Chen and Liu, 1981 j, 
from one-parameter inverse problems of the two-dimensional wave equation (Chen 
and Liu, 1983) to one-parameter inverse problems of the two-dimensional diffusion 
equation (Liu and Chen, 19X4),.... from multi-parameter inverse problems of one- 
dimensional evolution equations (Chen and Liu, 1984) to two-parameter inverse 
problems of the two-dimensional elastic wave equation (Chen and Xie, 1984). In 
this way, a large data bank of the intrinsic characteristics and the performance of 
PST has been built successfully (Fig. 10). .4s a matter of fact, the results of the 
present numerical simulations can be predicted from our data bank of PST. 
Nevertheless, for adding a few more data to the data bank and quieting some skep- 
ticism, numerical simulations of a few simple but non-trivial examples are carried 
out on coarse computational grids. 

From the data bank of PST, for cases with coarse computational grids 
(0.07 < Ax/L < 0.17), slow varying unknown parameters {(Max, ER 1 dk* / i!Y(.); 
(A?c/L) < 2, where k-* is a typical unknown parameter, Yk = Max, EbJ / K* 1, dii* is 
the difference of the values of k* at two adjacent points), without any artificially 
generated random noise, and O,,iY,JO, = Max, cn ( k* -k, / ) 5 1.00, the relative 
error QklYk (Qk = MaxxEQ /k* -k, I ) is less than 0.08. The accuracy can be 
improved greatly if either the initial guess is very close to the exact solution or a 
fine computational grid is used or both; e.g., in Chen and Tsien (1977), 
A.u/L = 0.00425, 0,/Y, < 0.0038 and @,,‘Y, < 0.0015, and in Chen and Xie (1984), 
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where a non-uniform grid system is used with the concentration of grid points in 
the neighborhood where the unknown parameters have the steepest gradients, 
Min Ax/L=O.O625, 0,/Y, =0.31 and aA/!&/, ~0.023. These data come from all 
numerical simulations with a proper regularization parameter 5 and a proper set of 
(s} if the Lapla ce transform is used or a proper set of 10) if the Fourier transform 
is used; by all means, these are not optimal. The question of how to choose these 
parameters will be discussed later. 

The closeness of k0 to k* always plays an important role in all iterative 
algorithms and there is no exception for PST. Its relevance to the convergence 
of the PST iterative algorithm will be discussed in upcoming paper by Chen, Xie 
and Liu. However, the sensitivity of the errors in PST with respect to the closeness 
of k, to k*, assuming that PST converges, will be of practical importance 
and the ratio Qk/Ok can be used to characterize it. From the data bank of PST, 
it is found that for cases with noiseless input data and slow varying 
of k. or k*CWax,., IAk,(jY~,),‘(A.~/L), (Max,,, IAk*I/~~.)/(A~u/L)d:!l, 

i0 -1 

MAX.JK*-$,I 

FIAX.iK*l 

10 
-4 

dXiL 

FIG. 10. Plots of Max Ik* - k,\,( /Max (k* ( vs &L from results of many numerical simulations of 
different inverse problems: for k* with moderate (Vk* 1 and x for k* with larger 1 Vk* 1. 
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Q < Qik;Ok < 0.35 and the average of Qn-/Ok is approximately equal to 0.15; but for 
cases with fast varying k. or k* and noiseless input data, Qk/O 50.6, which is not 
as good as the slow varying cases. 

As was mentioned in the previous section, there are two types of possible errors 
contained in the input data during the process of numerical simulation, the ever 
present numerical errors of O(dx,lL)” in solving the direct initial--boundary value 
problem and the artificial generated random noise by a random number generator. 
The first type of error is present in every example of numerical simulation, and in 
particular is manifest for cases of numerical simulation with coarse grids, which is 
one of the main reasons that even k, = k*, k, will not converge to k*. The other 
reason is the presence of regularization procedure. Nevertheless, from the data bank 
of PST Qki!Py, = O(d.y,iL). With regard to the additional random errors, numerical 
simulations were carried out independently for the one-parameter inverse problems 
of one-dimensional wave equation by Chen and Tsien (1977) and for the one- 
parameter inverse problems of one-dimensional diffusion equation by Merz (1983 1. 
In the first case, the random errors were injected into the Fourier transformed input 
data with the maximum noise to signal ratio R v 0.001 and in the second case, :he 
random errors were injected directly into original input data as functions of space 
and time (more realistic situations) with the maximum noise to signal ratio R 2 0.1. 
In each case, it is found that 46,/Y, = O(R) and PST is stable with respect to errors 
in the input data. 

It should be pointed out that the Laplace transformation of the input data is no! 
necessary in PST. As a matter of fact, in the early development of PST (Tsien and 
Chen, 1974, 1978; Chen and Tsien, 1977; Chen and Weng, 1982; Chen and Lin. 
1983) the Fourier transform was used. The reasons for the preference of Laplace 
transform later are purely numerical. Since the solution and the Green’s function of 
the Fourier transformed wave equation are oscillatory which make the kernel of the 
Fredholm integral equation of the first kind very oscillatory, it is necessary to use a 
fine grid system for solving the partial differential equation and the Fredholm 
integral equation of the first kind with the required accuracy. Unfortunately, this 
makes the extension of PST to solve the three-parameter inverse problems of two 
and three-dimensional elastic wave equations impossible which will be discussed 
later. Hence a coarse grid system or more precisely a small non-uniform grid system 
becomes necessary for the sucessful use of PST in solving the above-mentioned 
large inverse problems. On the other hand, the solution and the Green’s function of 
the Laplace transformed wave equation are non-oscillatory and hence the kernel of 
the Fredholm integral equation of the first kind is also non-oscillatory. These open 
the door for using a coarse grid system in PST to achieve the desired accuracy. In 
spite of the existence of the possible intrinsic accuracy limitations in the Laplace 
transformed hyperbolic equations, the data bank of PST shows that for a uniform 
coarse grid system 0.07 <Ax/L (0.17, the PST with Laplace transform has 
Qk/Yk < 0.08 and the accuracy can be improved to @,/YJ -0.023 and 
Qb,/Yv, ~0.008 when a non-uniform grid system is used with the grid points concen- 
trating at the neighborhood where high resolution is needed (Chen and Xie. 19843. 
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The problem of determining the optimal value of the regularization parameter t 
(if it ever exists) or one of its proper values is the most elusive but important 
problem. In spite of many methods for determining the regularization parameter 
appeared in literatures, there is still no practical method for providing an a priori 
estimation of the proper value of the regularization parameter, for it depends on the 
detail structure of the matrix A, in (25j, which in turn depends on the charac- 
teristics of the governing partial differential equations, the initial and boundary 
conditions, the dimension and geometry of the space domain, the methods dis- 
cretization of the partial differential equations and the Fredholm integral equation 
of the first kind, the number of the unknown parameters and discrete complex 
frequencies s,‘s. Our experiences in numerical simulation have indicated that the 
success or failure of PST in solving the inverse problems depends very much on the 
proper choice of T, which can be obtained by simply performing a trial and error 
procedure. Again, there is no practical method to determine a priori the proper 
values of s or o; our experiences have shown that the relative numerical error 
Qk/Yk is smaller for the frequency range 0 <s, o < 100 than it for the higher 
frequency range. The s,‘s of the three examples in this paper are chosen to be the 
same set: 0.1, 0.4, 0.8, 1.5, 3.0, 6.0, 10.0, 30.0, 45.0, 60.0, 80.0, and 90.0. The other 
relevant data are given in the following table. 

1 0.1 0.025 0.19 0.25 0.10 0.04 0.008 0.017 0.22 0.12 0.17 
2 0.1 0.04 0.37 0.51 0.10 0.07 0.07 0.02 0.19 0.23 0.21 

3 0.3 0.05 0.40 0.40 0.20 0.22 0.50 0.55 

The data of the first two examples are well within the bounds in the data bank of 
PST. The only difference between these two examples is that the initial guesses of 
the second example are farther away from the exact solutions than those of the first 
example; hence larger T is needed to stabilize the calculation which in turn makes 
its relative numerical errors larger. Even in the third example, where Ax/L, t, 
O,/ul,, and O,lYLu,l are large, still Q/Y = O(Ax/L j. Taking all above discussions ino 
consideration, there is no reason for PST not to give a similar or better perfor- 
mance when a liner grid system is used. 

In practise, PST can be used to solve the inverse problems with underground 
transparent boundary conditions as well as the boundary conditions used in this 
paper. To achieve this, there are two general approaches. One is the application of 
artificial boundaries, e.g., the paraxial boundary (Cohen, 1981) and the non- 
reflecting boundary (Kunar and Marti, 1981), and the other one is to gate the 
signals in the time-domain so that the signals used as the input data in the 
numerical simulation will not contain any reflected signals from the finite boundary. 
In either case, there are additional numerical errors being produced in the 
neighborhood of the boundary. Hence the original grid system must be extended 
beyond the original region of interest to provide the same accuracy for the original 
region of interest. However, this will increase the computation costs quite a lot. For 
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economical reasons, numerical simulations for inverse problems with underground 
transparent boundary conditions will not be performed in this paper until the 
efficiency of PST is further improved. 

In practice, the increases in the numbers of the computational zones and S, wiil 
not only make the discretized Fredholm integral equation of the first kind more ill- 
conditioned (we have accumulated the knowledge of how to control this situation). 
but also will inccur much higher computing costs. For example. the CPU time for 
solving the two-dimensional example with a 11 x 5 computational grid system is 
- 17 min on UNIVAC 1100; it probably will be - 1.7 min on CDC 7600 (assumed 
to be 10 times faster than UNIVAC 1100) or - 10.2 set on the existing GRAY 
(assumed to be 100 times faster than UNIVAC 1100). Here I/O time is negligible in 
comparison with the CPU time. It is assumed that the CPU time is consumed only 
by the arithmetic operations in the CPU and hence it is directly proportional to the 
number of arithmetic operations in the numerical algorithm. The approximate 
arithmetic operation count for PST can be estimated from the formula below: 

N{ l/6( TZ)3 + (TZ)‘(X+ l)M... for solving (25) once;, 

+ N{MDZ[ I+” + (2X+ 3) W’+ (X+ 1 )I... for solving (24) Mtimest. (26i 

where M is the number of the complex frequencies used, N is the number of 
iterations, T is the number of unknown parameters to be determined, I+’ is the half 
bandwidth of A,, in (24), X is the number of grid points where input data are 
prescribed, Z is the number of computational zones and D is the space dinxmsion. 
The estimated CPU time of CRAY for one arithmetic operation is 0.64 ps obtained 
by dividing 10.2 set by 15.95 x lo6 arithmetic operations [for two-dimensional 
examples, set D=2, M= 12, N=5, T=3, W=5, X=4 and Z=55 in (26):. The 
estimated CPU time of CRAY for solving the three-parameter inverse problems of 
the two-dimensional linear elastic wave equation with a 100 x 100 grid system by 
PST is 4.07 x lo3 hr obtained by multiplying 0.64 LLS by the operation count from 
(26). Hence PST is not suitable for this example. 

To overcome the above-mentioned computational difficulty, an automatic and 
intelligent adaptive-grid system is under development. This intelligent adaptive-grid 
system has the advantage of preserving the total number of grid points while mov- 
ing the concentration of the grid points to the regions where they are needed most 
for higher resolution. In this way, the new computational grid system for each 
iteration will be a finer mesh whenever the gradients of E~,Jx), j(,,(x) and p,>(x) 
become larger. with very little additional computing costs. in contrast, the conven- 
tional adaptive-grid systems increase the total number of grid points of the entire 
gird system so that computational costs will increase tremendously. Experiences 
have suggested that one needs only three well-distributed grid points per layer, 
assuming that 1.(x), p(x) and p(x) are slow varying within each layer, for PST to 
provide the required high resolution. Hence an inverse problem of a three-dimen- 
sional region with six vertical layers, three horizontal layers in one direction and 
two horizontal layers in the other direction, can be solved by the PST iterative 
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numerical algorithm with the automatic and intelligent adaptive-grid system on a 
18 x 9 x 6 grid system to achieve the same resolution of a uniform 100 x 100 x 100 
grid system. The determination of the number of layers in a local Earth structure 
which will in turn determine the number of grid points can be made easily by 
examining the timelog or its migration of the corresponding location. The estimated 
CPU time of CRAY, based on the above-mentioned method, for solving this thrce- 
parameter inverse problem of the three-dimensional elastic wave equation is 
-4.3 hr, and it is - 2.1 min for the corresponding two-dimensional inverse 
problem. Evidence in support of this approach can be readily found in the 
application of PST to solving two-parameter inverse problems in the non-destruc- 
tive evaluation (Chen and Xie, 1984), where a fixed non-uniform and intelligent 
(but not automatic) grid system with 0.0625 <Ax/L d 0.333 and the concentration 
of the grid points at the region where J*(x) and [L*(X) have the steepest gradients. 
With the relative errors in the initial guesses @,,lYA = 0.31 and O,/Yy, = 0.05, the 
relative errors in the numerical solutions are Qn/YJ. = 0.023 and @,,/Yp = 0.008. 
Thus we are confident that in the future many realistic three-parameter inverse 
problems of two- and three-dimensional linear elastic wave equations can be solved 
with sufficient accuracy by using PST with the above-mentioned automatic and 
intelligent adaptive-grid system on a super main-frame computer. 
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